Ads

Wikipedia

Hasil penelusuran

Minggu, 04 Oktober 2020

MAPEL FISIKA BAB 4 GERAK LURUS

 

Materi Kinematika Gerak Lurus

——————————————————————————————————————–

 Materi fisika sangat kental sekali dengan gerak benda. Pada pokok bahasan tentang gerak dapat timbul dua pertanyaan : Bagaimana sifat-sifat gerak tersebut (besaran-besaran yang terkait)? Kedua : Mengapa benda itu bisa bergerak? Pertanyaan pertama inilah yang dapat dijelaskan dengan pokok bahasan Kinematika Gerak. Sedangkan pertanyaan kedua dapat dijawab pada pokok bahasan Dinamika Gerak (bab berikutnya).
Sebagai contoh gerak sepeda motor pada gambar di atas. Untuk materi kinematika cukup ditanya berapa panjang lintasannya, bagaimana kecepatan dan percepatannya?
GERAK
1.   Pengertian Gerak dan Acuannya
      Gerak adalah perubahan kedudukan atau tempat suatu benda terhadap titik acuan atau titik asalnya. Jadi bila suatu benda kedudukannya berubah setiap saat terhadap titik acuannya maka benda tersebut dikatakan sedang begerak. Sebenarnya semua benda yang ada dipermukaan bumi selalu dalam keadaan bergerak terhadap matahari sebagai titik acuan. Selain itu benda yang ada dialam semesta ini melakukan gerak relatif satu terhadap yang lainnya sebagai contoh:
a.    Orang duduk dalam kereta api yang sedang berjalan. Orang tersebut diam terhadap kereta api, tetapi bergerak terhadap orang lain yang ada dipinggir jalan.
b.    Rumah diam terhadap bumi. Tetapi karena bumi bergerak terhadap matahari,yaitu bumi mengelilingi matahari dalam peredarannya maka rumah bergerak terhadap matahari.
      Jenis gerak dari suatu benda ditentukan oleh bentuk lintasannya. Jika benda bergerak dengan lintasan berupa garis lurus disebut dengan gerak lurus, jika lintasannya berbentuk lingkaran disebut gerak melingkar dan lintasanya berbentuk parabola disebut gerak parabola.
2. Jarak dan Perpindahan
          Perlu diingat bahwa perpindahan berbeda dengan jarak. Perpindahan adalah perubahan kedudukan suatu benda dihitung dari kedudukan awal, sedangkan jarak adalah panjang lintasan yang ditempuh benda. Perpindahan merupakan besaran vektor sedangkan jarak besaran skalar.
     
 
Gerak Lurus Beraturan (GLB)


Dalam kehidupan sehari-hari, seringkali kita menemukan peristiwa yang berkaitan dengan gerak lurus beraturan, misalnya orang yang berjalan dengan langkah kaki yang relatif konstan, mobil yang sedang bergerak, atau kereta api yang bergerak pada lintasan rel yang lurus dengan laju yang relatif konstan.
Sudah tahukah kalian dengan apa yang dinamakan gerak lurus beraturan?
Gerak lurus beraturan yang disingkat dengan GLB merupakan nama dari suatu gerak benda yang memiliki kecepatan beraturan. Bagaimanakah kecepatan beraturan itu? Tentu kalian sudah bisa mengerti bahwa kecepatan beraturan adalah kecepatan yang besar dan arahnya tetap sehingga lintasannya pasti berupa garis lurus.
Kalian mungkin pernah naik mobil dan melihat spedometernya yang menunjukkan nilai tetap dan arahnya tetap pula (misal 72 km/jam ke utara) maka pada saat itulah mobilnya bergerak GLB. Pesawat terbang yang sedang terbang pada ketinggian stabil dan kereta api pada jalan yang jauh dari stasiun akan bergerak relatif GLB. Disebut relatif GLB karena kecepatannya ada perubahan yang sangat kecil. Contoh lain benda yang bergerak GLB adalah mobil mainan otomatis.
Sifat gerak benda GLB dapat dijelaskan melalui grafik. Grafiknya dapat ditentukan dari eksperimen gerak mobil mainan dengan menggunakan kertas ketik. Grafik besar kecepatan v terhadap waktunya dapat dilihat seperti pada berikut.

Gerak Lurus Berubah Beraturan (GLBB)
Pernahkah kalian melihat benda jatuh? Jika kalian mencermati benda yang jatuh maka kecepatan benda itu akan bertambah semakin besar. Jika benda kalian lemparkan ke atas maka kecepatannya akan berkurang. Contoh gerak ini memiliki kecepatan yang berubah secara beraturan dan lintasannya lurus. Gerak seperti ini dinamakan gerak lurus berubah beraturan disingkat GLBB. Contoh lainnya adalah gerak pesawat saat akan take of maupun saat landing.
Dari contoh dan pengertian di atas dapatkah kalian menjelaskan sifat-sifat gerak GLBB? Kalian pasti mengingat lintasannya yaitu harus lurus. Kemudian kecepatannya berubah secara beraturan, berarti pada gerak ini memiliki percepatan. Agar kecepatan (v) berubah beraturan maka percepatan (a) harus tetap.
Sifat percepatan gerak benda ini dapat dijelaskan melalui grafik a-t seperti pada gambar berikut ini.
Gerak Vertikal
Gerak vertikal termasuk Gerak Lurus Berubah Beraturan. Gerak vertikal ada 3 jenis, yaitu: gerak jatuh bebas, gerak vertikal ke bawah dan gerak vertikal ke atas.
     
a. Gerak jatuh bebas 
Salah satu contoh gerak yang paling umum mengenai gerak lurus berubah beraturan (GLBB) adalah benda yang mengalami jatuh bebas dengan jarak yang tidak jauh dari permukaan tanah. Kenyataan bahwa benda yang jatuh mengalami percepatan, mungkin pertama kali tidak begitu terlihat. Sebelum masa Galileo, orang mempercayai pemikiran bahwa benda yang lebih berat jatuh lebih cepat dari benda yang lebih ringan, dan bahwa laju jatuh benda tersebut sebanding dengan berat benda itu. Galileo menemukan bahwa semua benda akan jatuh dengan percepatan konstan yang sama jika tidak ada udara atau hambatan lainnya. Ia menyatakan bahwa untuk sebuah benda yang jatuh dari keadaan diam tampak seperti pada gambar di atas, jarak yang ditempuh akan sebanding dengan kuadrat waktu, ∝ 2.
Untuk memperkuat penemuannya bahwa laju benda yang jatuh bertambah ketika benda itu jatuh, Galileo menggunakan argumen yang cerdik. Sebuah batu berat yang dijatuhkan dari ketinggian 2 m akan memukul sebuah tiang pancang lebih dalam ke tanah dibandingkan dengan batu yang sama tetapi dijatuhkan dari ketinggian 0,2 m. Jelas, batu tersebut bergerak lebih cepat pada ketinggian yang pertama (perhatikan gambar di atas).
Galileo juga menegaskan bahwa semua benda, berat atau ringan jatuh dengan percepatan yang sama, jika tidak ada udara (hampa udara). Jika kalian memegang selembar kertas secara horizontal pada satu tangan dan sebuah benda lain yang lebih berat, misalnya sebuah bola di tangan yang lain, dan melepaskan kertas dan bola tersebut pada saat yang sama seperti pada gambar (a), benda yang lebih berat akan lebih dulu mencapai tanah. Jika kemudian selembar kertas tersebut diremas menyerupai bola, dan dijatuhkan pada saat yang sama dengan bola tersebut seperti gambar (b), maka kedua benda akan mencapai tanah hampir bersamaan.
Galileo yakin bahwa udara berperan sebagai hambatan untuk benda-benda yang sangat ringan yang memiliki permukaan yang luas. Tetapi pada banyak keadaan biasa, hambatan udara ini bisa diabaikan.Pada suatu ruang di mana udara telah dihisap, maka benda ringan seperti bulu atau selembar kertas yang dipegang horizontal akan jatuh dengan percepatan yang sama seperti benda yang lain, tampak seperti pada gambar di atas. Sumbangan Galileo yang spesifik terhadap pemahaman kita mengenai gerak benda jatuh bebas dapat dirangkum sebagai berikut:
“Pada suatu lokasi tertentu di Bumi dan dengan tidak adanya hambatan udara, semua benda jatuh dengan percepatan konstan yang sama”.
Kita menyebut percepatan ini percepatan yang disebabkan oleh gravitasi pada Bumi dan diberi simbol dengan g, besar percepatan gravitasi kira-kira = 9,80 m/s2. Besar percepatan gravitasi sedikit bervariasi menurut garis lintang dan ketinggian, tampak pada tabel berikut. Tetapi variasi ini begitu kecil sehingga kita bisa mengabaikannya untuk sebagian besar kasus. Efek hambatan udara seringkali kecil, dan akan sering kita abaikan. Bagaimanapun, hambatan udara akan tampak, bahkan pada benda yang cukup berat jika kecepatannya besar.

Tips dan Trik Penyelesaian Soal




MAPEL FISIKA BAB 5 SUHU, KALOR DAN PERPINDAHAN KALOR

 SUHU


Suhu adalah derajat panas atau dinginnya suatu benda. Suhu dapat diukur dengan menggunakan alat yang disebut termometer. Sifat yang diukur untuk menyatakan suhu disebut sifat termometrik. Satuan suhu adalah derajat. Zat cair yang biasa digunakan untuk mengisi termometer adalah air raksa karena raksa memiliki beberapa kebaikan seperti:
  • segera dapat mengambil panas benda yang akan diukur sehingga suhu air raksa segera dapat sama dengan suhu benda yang diukur
  • dapat dipakai untuk mengukur suhu yang rendah sampai yang tinggi sebab air raksa memiliki titik beku pada 39oC dan titik didihnya pada suhu 357oC
  • tidak membasahi dinding tabung sehingga pengukurannya menjadi lebih teliti
  • pemuaian air raksa teratur, artinya linier terhadap kenaikan suhu kecuali pada suhu yang sangat tinggi
  • mudah dilihat karena air raksa mengkilap

Alkohol dapat juga digunakan untuk mengisi tabung termometer karena alkohol dapat mengukur suhu yang lebih rendah lagi tetapi tidak dapat mengukur suhu yang tinggi sebab titik bekunya -144oC dan titik didihnya 78oC. Jadi termometer alkohol sangat baik untuk mengukur suhu-suhu yang rendah tetapi tidak dapat mengukur suhu-suhu yang tinggi.
Air tidak digunakan untuk mengisi termometer karena jangkauan suhu air terbatas (0oC–100oC), tidak berwarna sehingga sulit dilihat, membasahi dinding tempatnya dan memerlukan waktu lama sehingga mengurangi ketelitian pembacaan skala.
Untuk menyatakan suhu dengan bilangan diperlukan patokan suhu yang tetap yang dapat dibuat kembali dengan mudah dan teliti. Patokan suhu yang digunakan disebut titik tetap.
Dari skala suhu yang ada sekarang telah ditetapkan:

a. Termometer skala Celsius
Memiliki titik didih air 100°C dan titik bekunya 0°C. Rentang temperaturnya berada pada temperatur 0°C – 100°C dan dibagi dalam 100 skala.

b. Temometer skala Reamur
Memiliki titik didih air 80°R dan titik bekunya 0°R. Rentang temperaturnya berada pada temperatur 0°R – 80°R dan dibagi dalam 80 skala.

c. Termometer skala Fahrenheit
Memiliki titik didih air 212°F dan titik bekunya 32°F. Rentang temperaturnya berada pada temperatur 32°F – 212°F dan dibagi dalam 180 skala.

d. Termometer skala Kelvin
Memiliki titik didih air 373,15 K dan titik bekunya 273,15 K. Rentang temperaturnya berada pada temperatur 273,15 K – 373,15 K dan dibagi dalam 100 skala.
Jadi, jika diperhatikan pembagian skala tersebut, satu skala dalam derajat Celsius sama dengan satu skala dalam derajat Kelvin, sementara satu skala Celsius kurang dari satu skala Reamur dan satu skala Celsius lebih dari satu skala Fahrenheit. Secara matematis perbandingan keempat skala tersebut,yaitu sebagai berikut.
Termometer
Termometer adalah alat yang dipakai untuk mengukur suhu dengan tepat dan menyatakannya dengan angka (lihat gambar di atas). Secara umm termometer terbuat dari pipa kaca yang diisi dengan zat cair. Prinsip dasar mengapa digunakannya zat cair sebagai pengisi termometer adalah karena zat cair mengalami perubahan volume seandainya suhu berubah. Beberapa jenis termometer dalam kehidupan sehari-hari antara lain:

       Termometer klinis, digunakan untuk mengukur suhu badan manusia. Angka-angka pada termometer klinis didesain dari 35oC sampai dengan 42oC (lihat gambar di bawah)

       Termometer dinding, umumnya dipasang tegak di dinding dan digunakan untuk mengukur suhu ruangan. Skala termometer dinding didesain dari -50oC sampai dengan 50oC (lihat gambar di bawah)


       Termometer Maksimum dan Minimum Six – Bellani, digunakan untuk mengukur suhu maksimum dan minimum di dalam rumah kaca yang dipakai untuk menanam tanaman sebagai bahan penelitian (lihat gambar di bawah)

Kalorimeter

Dengan menerapkan hukum kekekalan energi dapat dilakukan pengukuran-pengukuran kalor atau kalorimetri. Kalorimeter adalah suatu alat yang dapat digunakan untuk menentukan besarnya kalor jenis dari suatu zat. Kalorimeter bekerja berdasarkan asas Black, yaitu besarnya kalor yang dilepaskan oleh sebuah benda yang suhunya lebih tinggi akan sama dengan kalor yang diterima oleh benda yang bersuhu lebih rendah.
Kalorimeter dibuat dari bejana yang sudah diketahui kalor jenisnya (ck) misalnya tembaga atau aluminium. Bejana ini dimasukkan ke dalam bejana yang lebih besar kemudian ditutup dengan kayu. Pada tutup ini dilengkapi dengan dua buah lubang, yang satu untuk termometer dan yang satunya untuk pengaduk. Supaya tidak ada panas yang hilang, di antara bejana yang kecil dan yang besar diletakkan gabus. Langkah-langkah penggunaan kalorimeter yaitu:
       Kalorimeter dan pengaduknya ditimbang (mk)
    Kalorimeter diisi air lalu ditimbang lagi. Hasilnya dikurangi dengan mk, maka diperoleh massa air (ma).
       Suhu kalorimeter berikut air dan pengaduknya diukur dengan termometer (ta = tk)
       Bahan yang akan diukur kalor jenisnya ditimbang (mx)
       Bahan dipanaskan kemudian diukur suhunya (tx)
       Bahan yang sudah dipanaskan dimasukkan ke dalam kalorimeter dan diaduk perlahan kemudian diukur suhu campurannya (tcp)
Dalam hal ini, yang melepaskan kalor adalah bahan yang akan dicari kalor jenisnya dan benda yang menerima kalor adalah air dan kalorimeter. Menurut hukum kekekalan energi:

Dengan memasukkan harga-harga dari hasil pengukuran di atas maka kalor jenis bahan (cx) dapat dihitung.

Persamaan Kalor

Pada saat memanaskan air di panci dengan menggunakan kompor misalnya, maka api dari kompor memberikan kalor kepada air. Beberapa saat kemudian, air akan menjadi hangat dan akhirnya menjadi panas. Itu berarti air mengalami kenaikan suhu. Dari kejadian ini dapat disimpulkan bahwa kalor yang diberikan pada suatu zat dapat menaikkan suhu zat tersebut. Jika air telah mencapai suhu 100oC (titik didih air) dan terus dipanaskan maka lama kelamaan air jumlah air akan semakin berkurang karena telah berubah menjadi uap atau dengan kata lain, jika suhu suatu zat telah mencapai titik didih maka kalor yang diberikan digunakan untuk mengubah wujud. Semakin banyak jumlah air yang dipanaskan maka waktu yang diperlukan untuk memanaskan air semakin lama atau dengan kata lain kalor yang diperlukan semakin banyak. Dari uraian di atas dapat disimpulkan bahwa kalor yang diberikan sebanding dengan perubahan suhu suatu zat dan juga sebanding dengan massa zat. Secara matematis:

Besaran m .c pada persamaan kalor di atas disebut dengan kapasitas kalor (C). Secara matematis:
Jadi kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu suatu zat sebesar 1oC dengan satuan J/oC.

Asas Black

Apabila suatu zat dicampur dengan zat lain yang suhunya berbeda, maka antara kedua zat itu akan terjadi pertukaran kalor hingga tercapainya keseimbangan termal dimana suhu kedua zat akan sama. Hal ini di kemukakan oleh Joseph Black (lihat gambar di atas). Black menemukan bahwa pada proses pencampuran ini, besarnya kalor yang dilepaskan oleh zat yang suhu awalnya lebih tinggi akan sama dengan besarnya kalor yang diterima oleh zat yang suhu awalnya lebih rendah. Black kemudian merumuskan asasnya yang berbunyi: kalor yang dilepas sama dengan kalor yang diterima. Asas Black merupakan bentuk lain dari hukum kekekalan energi, yaitu banyaknya energi selalu tetap. Artinya, bila sebuah benda memberikan kalor kepada benda lain, maka kalor yang diterima sama dengan kalor yang diberikan. Secara matematis:


Perubahan Wujud Zat

Telah ditunjukkan sebelumnya bahwa kalor dapat mengubah wujud suatu zat. Tapi perubahan wujud ini tidak selalu memerlukan kalor dalam prosesnya namun ada juga perubahan wujud yang dalam prosesnya justru melepaskan kalor. Perubahan wujud zat dapat dibedakan menjadi perubahan fisika dan perubahan kimia. Perubahan fisika adalah perubahan wujud yang terjadi pada suatu zat dimana zat tersebut dapat dikembalikan lagi ke wujud semula atau dalam proses perubahan itu tidak dihasilkan zat baru. Misalnya lilin jika dibakar akan meleleh dan ketika didinginkan maka akan kembali menjadi padat (lihat gambar di atas). Perubahan kimia adalah perubahan wujud zat dimana zat tersebut tidak dapat kembali ke wujud semula atau pada proses perubahan itu dihasilkan zat baru. Misalnya kertas yang dibakar akan menjadi arang dan tidak dapat kembali lagi menjadi kertas (lihat gambar di bawah)

Dalam pokok bahasan ini akan dibahas mengenai perubahan fisika. Perubahan fisika meliputi melebur, membeku, mengembun, menguap, dan menyublim (lihat gambar di bawah)

Melebur/mencair adalah perubahan wujud zat dari padat menjadi cair sedangkan membeku adalah perubahan wujud zat dari cair menjadi padat. Ketika melebur terjadi penyerapan kalor sedangkan ketika membeku terjadi pelepasan kalor. Untuk melebur ataupun membeku, suatu zat harus mencapai suatu suhu tertentu yang disebut titik lebur atau titik beku. Kalor dalam joule yang diperlukan untuk meleburkan 1 kg zat padat menjadi 1 kg zat cair pada titik leburnya disebut kalor lebur. Sebaliknya, kalor yang dilepaskan pada waktu 1 kg zat cair membeku menjadi 1 kg zat padat pada titik bekunya disebut kalor beku. Untuk zat yang sama, titik lebur sama dengan titik bekunya dan kalor lebur sama dengan kalor bekunya.
Secara matematis:
Menguap adalah perubahan wujud zat dari zat cair menjadi gas dan sebaliknya mengembun adalah perubahan wujud zat dari gas menjadi cair. Ketika menguap terjadi penyerapan kalor dan sebaliknya ketika mengembun terjadi pelepasan kalor. Zat cair dikatakan mendidih jika terjadi gelembung-gelembung uap di dalam seluruh zat cair dan dapat meninggalkan zat cair. Suhu zat ketika mendidih disebut titik didih. Banyaknya kalor dalam joule yang diperlukan untuk menguapkan 1 kg zat cair menjadi 1 kg gas pada titik didihnya disebut kalor uap. Sebaliknya banyaknya kalor yang dilepaskan 1 kg gas ketika berubah menjadi zat cair disebut kalor embun. Untuk zat yang sama, kalor uap sama dengan kalor embunnya.
Secara matematis:
Menyublim adalah perubahan wujud zat padat menjadi gas tanpa melalui fase cair atau sebaliknya dari gas menjadi padat. Ketika zat padat berubah menjadi gas terjadi penyerapan kalor dan ketika gas menjadi zat padat terjadi pelepasan kalor. Contoh zat yang dapat menyublim adalah kapur barus, yodium, dan naftalin.



PERPINDAHAN KALOR

Kalor adalah energi yang diterima oleh sebuah benda sehingga suhu benda tersebut naik atau melakukan perubahan wujud. Satuan kalor adalah kalori atau disingkat kal. Satu kalori adalah banyaknya kalor yang diperlukan untuk memanaskan 1 gram air sehingga suhunya naik 10C. James Prescott Joule, seorang ahli fisika dari Inggris, mempelajari hubungan antara timbul dan hilangnya kalor terhadap perubahan energi mekanik. Melalui percobaan yang dilakukan berulang kali akhirnya diperoleh hubungan sebagai berikut:
1 kal = 4,2 joule
1 kkal = 4.200 joule
1 joule = 0,24 kal
Perpindahan kalor dari suatu benda terjadi jika ada perubahan atau perbedaan suhu, sedangkan jika suhunya sama akan terjadi keseimbangan yang berarti tidak ada perpindahan kalor atau energi. Perpindahan kalor dapat dikelompokkan dalam tiga bagian yaitu perpindahan kalor secara :
·      Konduksi (hantaran)
Konduksi adalah proses transformasi panas di dalam zat perantara dimana energi panas berpindah dari molekul yang satu ke molekul yang ada di dekatnya hanya dengan jalan getaran termal berkala, tanpa ada pemindahan massa zat perantara sama sekali.
Contoh konduksi terjadi pada besi yang salah satu ujungnya dipanaskan. Untuk mencegah konduksi pada barang-barang rumah tangga yang terbuat dari logam yaitu dengan menambahkan bahan isolator seperti plastik pada pegangan sendok, panci, dan lain-lain.
·      Konveksi (aliran)
Konveksi adalah proses pemindahan panas dari suatu tempat ke tempat lain melalui perpindahan massa zat cair atau gas yang dipanasi dari tempat satu ke tempat yang lain. Hanya terjadi pada zat cair dan gas.
Contoh penerapan konveksi antara lain cerobong asap, pengisian gas freon, obat nyamuk, minyak wangi, dan lain-lain. Untuk mencegah terjadinya konveksi terutama pada bangunan biasanya dipasang plafon di bagian bawah atap bangunan.
 ·      Radiasi (pancaran)

Radiasi adalah transformasi energi panas lantaran gelombang elektromagnetik, tidak ada zat perantara yang memegang peranan dalam proses pemindahan ini.
Contoh : radiasi sinar matahari. Untuk mencegah terjadinya radiasi misalnya pemakaian kostum anti radiasi, rumah dicat putih agar memantulkan kembali kalor radiasi matahari.

Pemuaian

Jika suatu zat diberikan kalor maka zat itu akan memuai atau bertambah besarnya tergantung pada jenis bahan, ukuran benda mula-mula, dan besarnya perubahan suhu atau kalor yang diberikan. Salah satu contoh penerapan konsep pemuaian adalah rel kereta api yang ada celahnya (lihat gambar di atas).
Pemuaian ada tiga macam yaitu muai panjang, muai luas, dan muai volume. Zat padat mengalami ketiga pemuaian tersebut sedangkan zat cair dan gas hanya mengalami muai volume saja.
Muai panjang dialami oleh zat padat yang luas penampangnya sangat kecil bila dibandingkan dengan panjangnya. Perubahan panjang per satuan panjang tiap derajat perubahan suhu disebut koefisien muai panjang zat padat. Secara matematis:
 Koefisien muai luas suatu zat adalah perubahan luas per satuan luas tiap derajat perubahan suhu. Secara matematis:
Koefisien muai volume adalah perubahan volume per satuan volume tiap derajat perubahan suhu. Secara matematis:
 


MAPEL KIMIA BAB 11 Sistem Koloid

  Pada artikel kali ini, kita akan belajar tentang materi koloid, mulai pengertian, jenis-jenis, cara pembuatan, sampai manfaat koloid dalam...